QHFlow

: Accelerating DFT with Equivariant Flow Matching

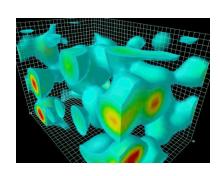
Seongsu Kim¹, Nayoung Kim¹, Dongwoo Kim², and Sungsoo Ahn¹
¹KAIST, ²POSTECH

NVIDIA BioNeMo Reading group | Oct. 30. 2025 NeurIPS 2025 spotlight

Atomistic interaction modeling for materials

Atomistic Interaction Modeling

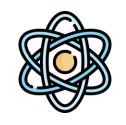
Molecular Dynamics



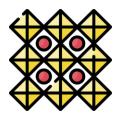
Wavefunction

Material Understanding

Chemical Reaction



Quantum Effects



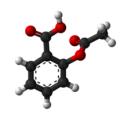
Solid State Effects

Example

Classical Force Field
Machine Learning Force Field (MLFF)
Machine Learning Interatomic Potential (MLIP)
Density Functional Theory (DFT)
Wavefunction based method (QVMC, CCSD)

•••

Material Discovery



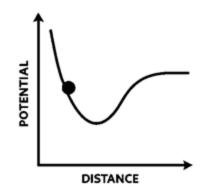
Molecule

Drug

Battery cathode

Our interests: DFT

Classical Efficiency



Level of Theory (classical) Interatomic potential

Speed

Accuracy Fidelity

Examples

Fastest

Low

Poor quantum interaction

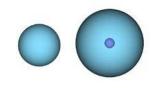
Classical Force Field

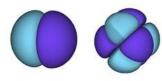
Balanced

Electron density

Density Functional Theory

Quantum Accuracy





Wavefunction

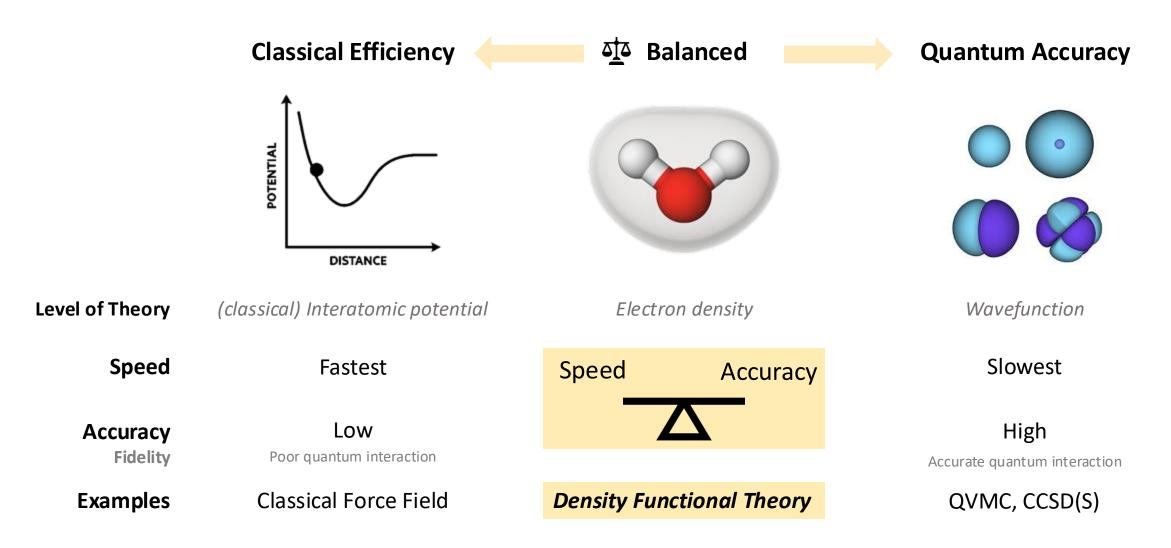
Slowest

High

Accurate quantum interaction

QVMC, CCSD(S)

Our interests: DFT

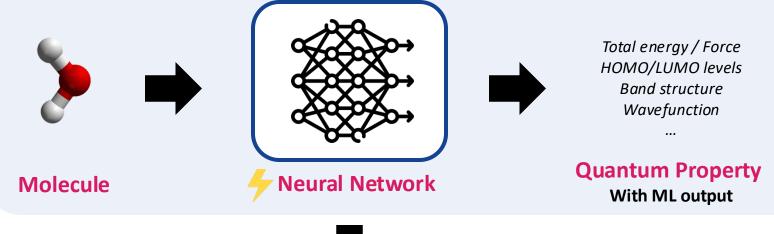


DFT is a common standard in computational chemistry for both industry and academia

Our goal: ML-DFT

Goal 1: Fast Prediction

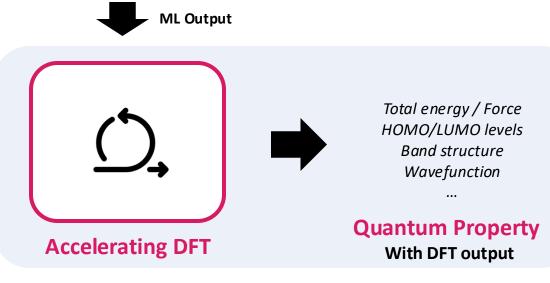
(One-shot approximation)



Fast Prediction

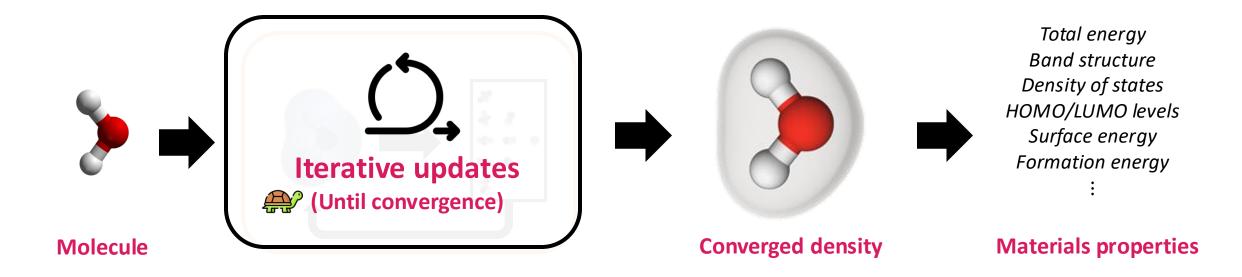
Goal 2: DFT Acceleration

(With DFT calculation)

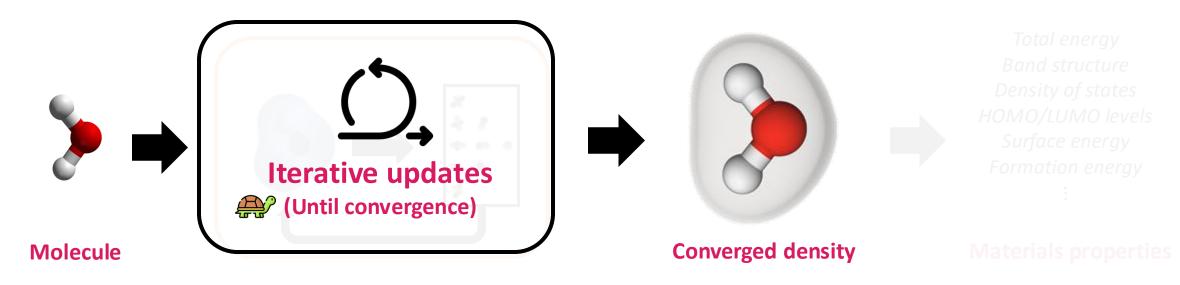


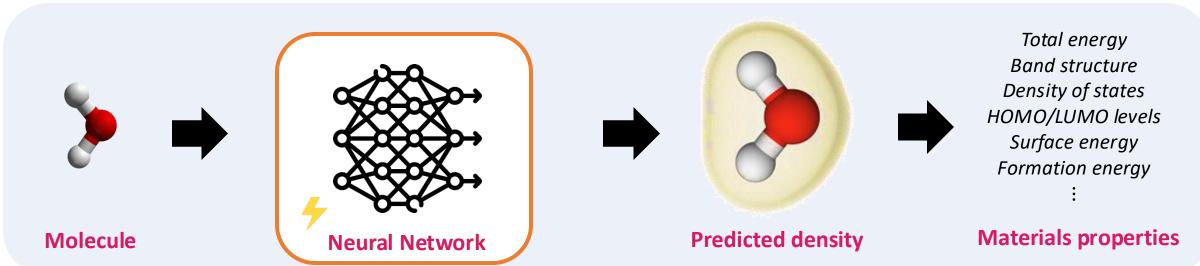
DFT-level Accuracy

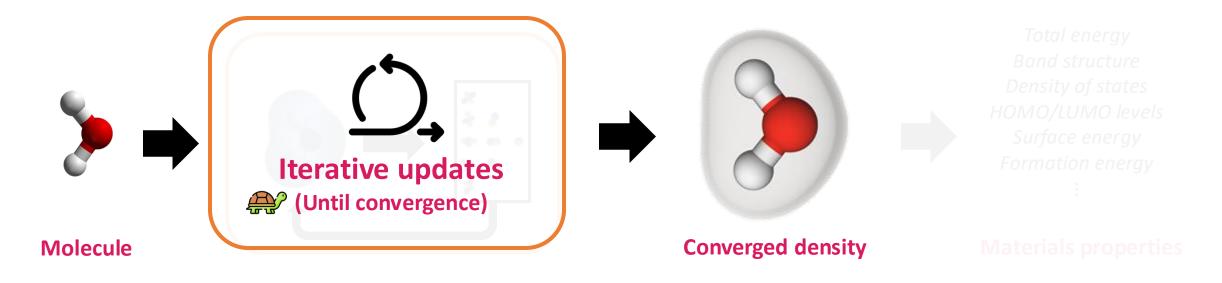
What is DFT?



Our goal: (1) DFT Approximation

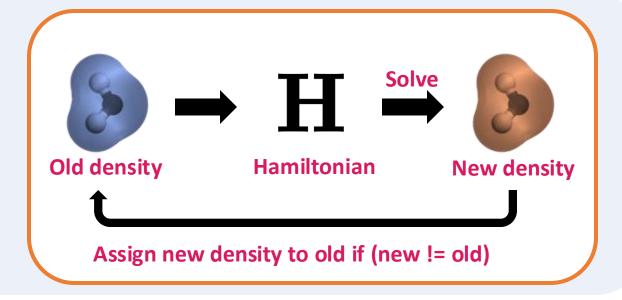


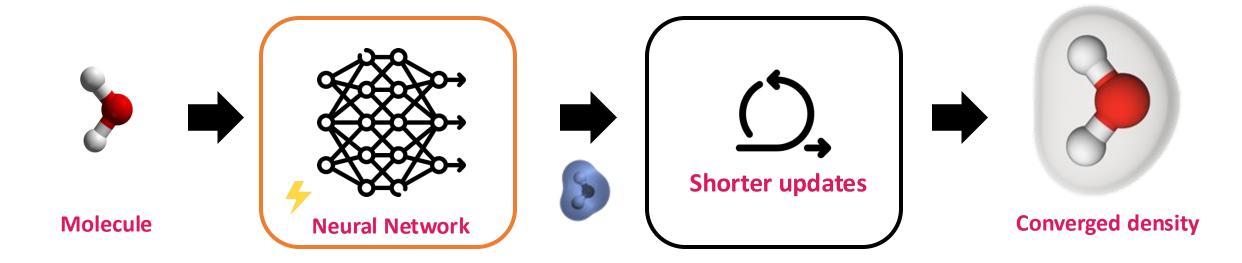


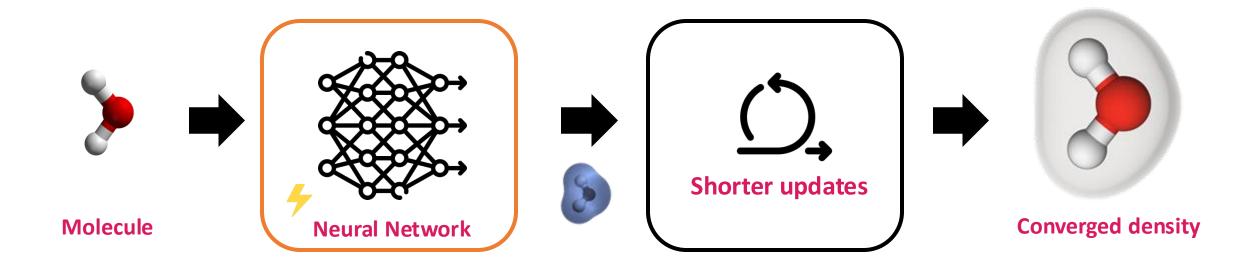


Self-Consistent Field (=Iterative updates, SCF)

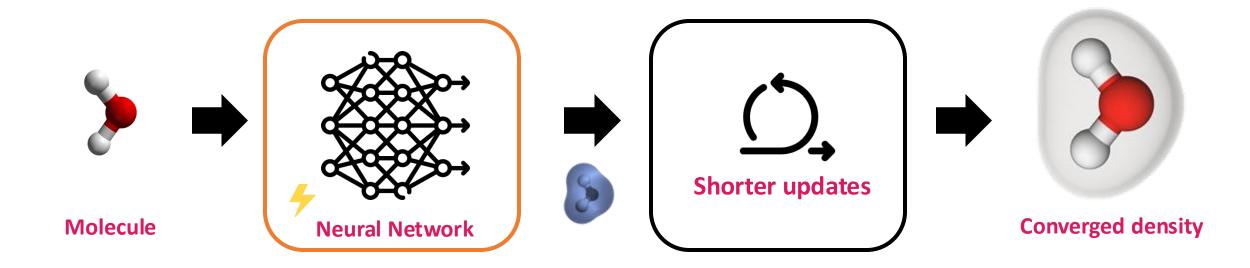
Good initial density is needed







Spoiler: with ML acceleration..



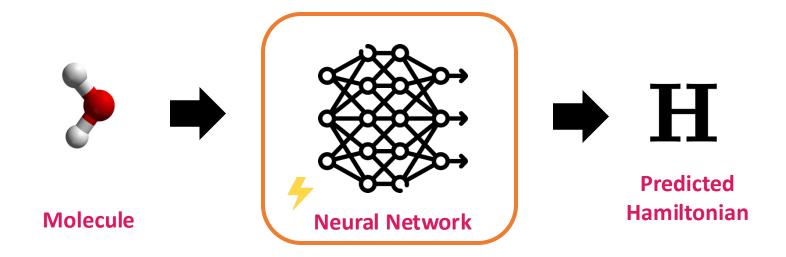
Spoiler: with ML acceleration..

-70% steps

-50% total time

(vs. conventional density initialization)

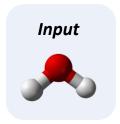
Our objective



Objective (as ML task):

Predict the Hamiltonian matrix from atomic geometry without SCF iterations

ML-DFT vs. MLFF / MLIP



Output format

Prediction Target

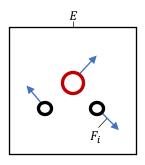
Available Properties

Correctability

Energy Error (MD17)

MLFF / MLIP

NequIP, Equiformer



Energy / Force

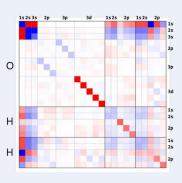
Energy, Force, Stress

(+ Scalar properties)

Vo

1 Equiformer: **ML-DFT**

QHNet, QHFlow



DFT Hamiltonian matrix

All DFT properties

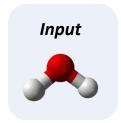
Energy, Force, Stress, Electron density Wavefunction, DOS, etc.

Yes

1/50

OHFlow / Equiformer

ML-DFT vs. MLFF / MLIP



Output format

Prediction Target

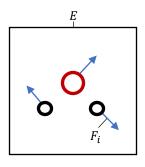
Available Properties

Correctability

Energy Error (MD17)

MLFF / MLIP

NequIP, Equiformer



Energy / Force

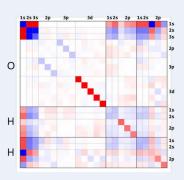
Energy, Force, Stress

(+ Scalar properties)

No

1 Equiformer=1 **ML-DFT**

QHNet, QHFlow



DFT Hamiltonian matrix

All DFT properties

Energy, Force, Stress, Electron density Wavefunction, DOS, etc.

Yes

1/50 QHFlow / Equiformer

Schrödinger Equation

The Hamiltonian of interest stems from the Schrödinger Equation

$$\hat{H}\psi = E\psi$$

This equation is the master equation of chemistry (Quantum mechanics)

 $oldsymbol{H}$: Hamiltonian operator of the system

E : **Total energy** of the system

 ψ : Wavefunction

By solving the equation, we can get all information about the material!

However, directly solving it is extremely hard - O(N!) (Full Configuration Interaction)

Schrödinger Equation

The Hamiltonian of interest stems from the Schrödinger Equation

$$\hat{H}\psi = E\psi$$

This equation is the master equation of chemistry (Quantum mechanics)

 \hat{H} : **Hamiltonian operator** of the system

E : *Total energy* of the system

 ψ : Wavefunction

By solving the equation, we can get all information about the material!

However, directly solving it is extremely hard - O(N!) (Full Configuration Interaction

Schrödinger Equation

The Hamiltonian of interest stems from the Schrödinger Equation

$$\hat{H}\psi = E\psi$$

This equation is the master equation of chemistry (Quantum mechanics)

 \hat{H} : **Hamiltonian operator** of the system

E : *Total energy* of the system

 ψ : Wavefunction

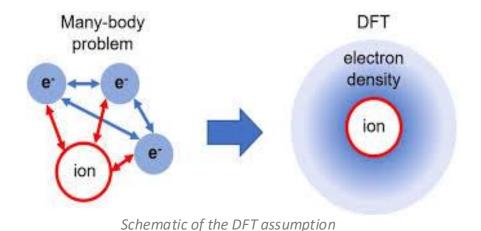
By solving the equation, we can get all information about the material!

However, directly solving it is extremely hard - O(N!) (Full Configuration Interaction)

Kohn-Sham (KS) Density Functional Theory

(Kohn-Sham) DFT is a practical approximation of the Schrödinger Equation

Main idea: Reformulate many-body interaction to functional of the density ρ



Advantage: make the complex problem into small independent problem

$$\hat{H}\psi=E\psi$$
ginal Schrödinger Equation

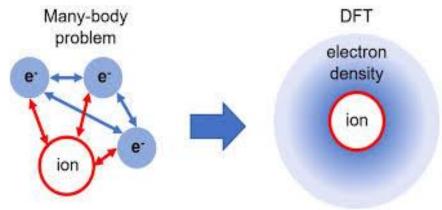
$$\hat{H}_{ ext{KS}}[
ho]\phi_{m{i}})(r)=\phi_{m{i}}(r)_{\,,}$$
 $ho(r)=\sum_i |\phi_i(r)|^2$

Kohn-Sham DFT formulation

Kohn-Sham (KS) Density Functional Theory

(Kohn-Sham) DFT is a practical approximation of the Schrödinger Equation

Main idea: Reformulate *many-body interaction* to *functional of the density* ρ



Schematic of the DFT assumption

Advantage: make the complex problem into *small independent problem*

$$\hat{H}\psi=E\psi$$

$$(\hat{H}_{
m KS}[
ho]\phi_{m i})(r)=\phi_{m i}(r)$$
 , $ho(r)=\sum_i |\phi_i(r)|^2$ Kohn-Sham DFT formulation

Original Schrödinger Equation

DFT in matrix formulation

KS-DFT equation can be converted into the matrix form

Also known as the **Roothaan-Hall DFT** (*RH-DFT*):

$$\mathbf{HC} = \mathbf{SC}\epsilon$$

RH-equation

 $oldsymbol{H}$: Hamiltonian matrix (or called Fock matrix $oldsymbol{F}$)

C: Density coefficient matrix

S: Overlap matrix

←: Diagonal orbital energy matrix

With RH-DFT, we can handle the **density function** ρ as the coefficient matrix $oldsymbol{C}$

DFT in matrix formulation

KS-DFT equation can be converted into the matrix form

Also known as the Roothaan-Hall DFT (RH-DFT):

$$\mathbf{HC} = \mathbf{SC}\epsilon$$

RH-equation

H: **Hamiltonian matrix** (or called Fock matrix **F**)

C: Density coefficient matrix

S : Overlap matrix

 $\epsilon \in \mathcal{E}$:Diagonal orbital energy matrix

With RH-DFT, we can handle the **density function** ho as the coefficient matrix ${f C}$

DFT in matrix formation

$$\mathbf{HC} = \mathbf{SC}\epsilon$$

S is fixed when the system is given, easy to calculate (it depends on orbital basis set)

 \mathbf{C} , $\boldsymbol{\epsilon}$ can be obtained when \mathbf{H} , \mathbf{S} are known

If we know the ${f H}$, then we can get electron density from obtained ${m C}$

(Note) C is not uniquely determined due to gauge freedom, so not a good target for supervised learning

From **H**, **C**, and ϵ , we can calculate the *HOMO/LUMO*, *Energy*, *Force*, etc..

We introduce QHFlow,
a Hamiltonian prediction framework
high-order equivariant flow matching with
invariant tensor-expansion priors

QHFlow significantly improves DFT (SCF) performance

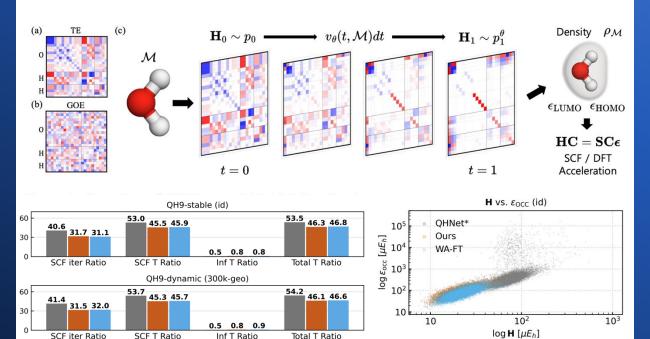
- Reduces the Hamiltonian error UP TO 73%
- Reduces the SCF iteration steps UP TO 68%
- Reduces the total DFT (SCF) time UP TO 54%

High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction

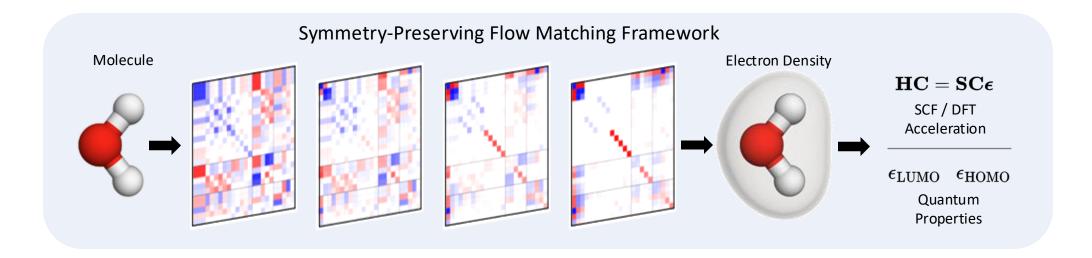
Seongsu Kim¹ Nayoung Kim¹ Dongwoo Kim² Sungsoo Ahn¹

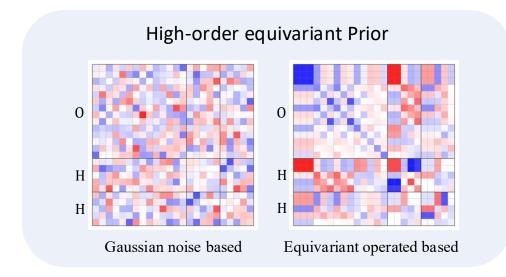
¹KAIST ²POSTECH

{seongsu.kim, nayoungkim, sungsoo.ahn}@kaist.ac.kr
dongwoo.kim@postech.ac.kr
https://github.com/seongsukim-ml/QHFlow



Overview of QHFlow





Physics Informed Finetuning

$$Loss_{\mathrm{FT}} = ||\tilde{\boldsymbol{\epsilon}}_{\theta} - \boldsymbol{\epsilon}||$$

DFT identity
$$\epsilon = \mathbf{C}^\mathsf{T} \mathbf{H} \mathbf{C}$$

Approximated
$$\tilde{\boldsymbol{\epsilon}}_{\theta} = \mathbf{C}^{\mathsf{T}} \mathbf{H}_{\theta} \mathbf{C}$$

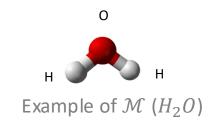
Problem setting

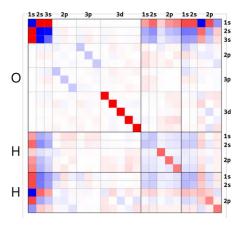
Objective: predict the Hamiltonian matrix **H**

Input: (1) Molecular geometry \mathcal{M} (atomic numbers Z, atomic positions X)

(2) Conventional Hamiltonian initial guess matrix \mathbf{H}_{init}

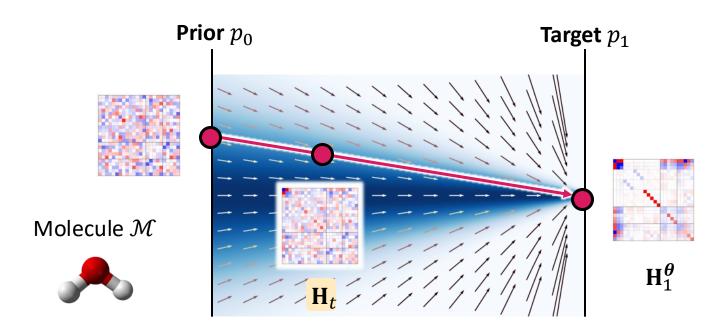
$$\mathbf{H}_{\text{pred}} = f_{\theta}(\mathcal{M}, \mathbf{H}_{\text{init}}) + \mathbf{H}_{\text{init}}$$





Example of Hamiltonian matrix **H** (H_2O)

Our method: Molecule conditioned flow matching



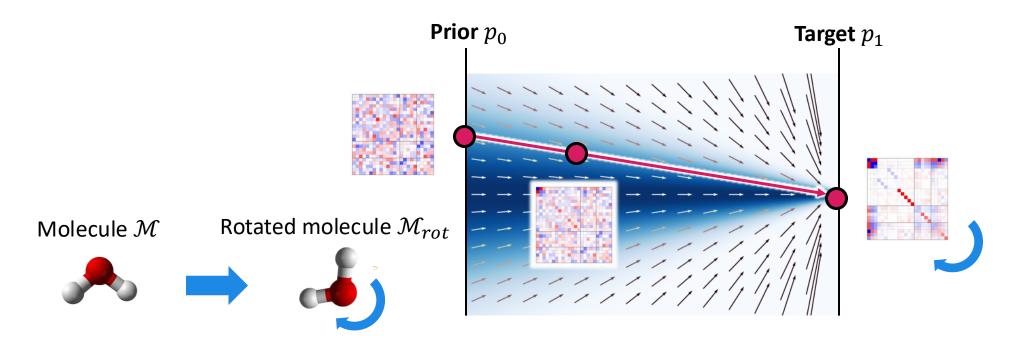
Insight: Learning the end point prediction \mathbf{H}_{1}^{θ} from middle point \mathbf{H}_{t}

Vector field:

$$v_t^{\theta} = \frac{\mathbf{H}_1^{\theta} - \mathbf{H}_t}{1 - t}$$

$$\mathcal{L}_{\mathrm{CFM}} = \mathbb{E}_{(\mathbf{H},\mathcal{M})\sim\mathcal{A},t\sim\mathcal{U}(0,1),\mathbf{H}_t\sim p_t(\cdot|\mathbf{H})} \left[\frac{1}{(1-t)^2} \left\| \mathbf{H}_1^{\theta}\left(\mathbf{H}_t,\mathcal{M}\right) - \mathbf{H}_{1,\mathcal{M}} \right\|_2^2 \right]$$

Our method: Equivariant flow matching

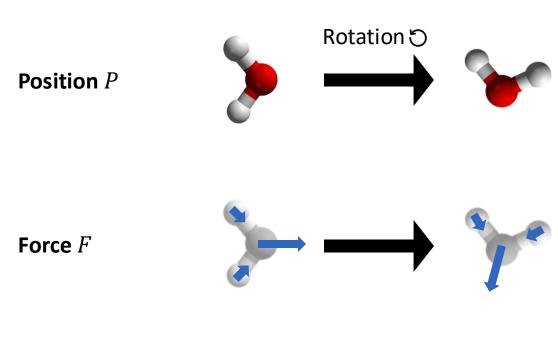


Preserving *symmetry* with flow matching

Equivariant flow matching

Equivariant property of Hamiltonian (Symmetry)

Just like forces, Hamiltonian matrix rotates along with the system



$$F \stackrel{R}{\rightarrow} \mathbf{R}F$$

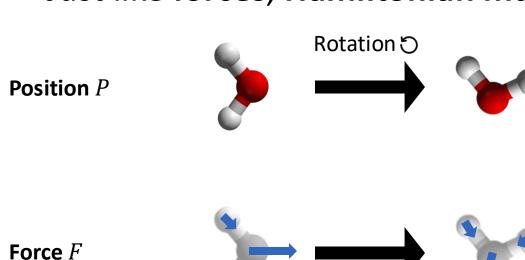
 $P \xrightarrow{R} \mathbf{R}P$

$$H \stackrel{R}{\to} \mathbf{D}(\mathbf{R})^{\mathrm{T}} H \mathbf{D}(\mathbf{R})$$

D(**R**) plays a role of high-order rotation

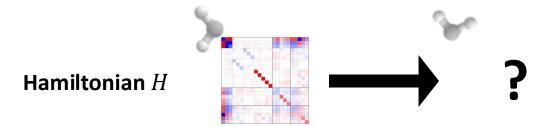
Equivariant property of Hamiltonian (Symmetry)

Just like forces, Hamiltonian matrix rotates along with the system



$$F \stackrel{R}{\rightarrow} \mathbf{R}F$$

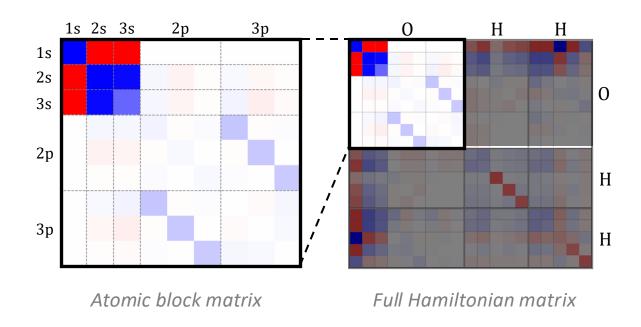
 $P \xrightarrow{R} \mathbf{R}P$



$$H \stackrel{R}{\rightarrow} \mathbf{D}^{\mathsf{T}} H \mathbf{D}$$

D := D(R) plays a role of high-order rotation

Equivariance of Hamiltonian

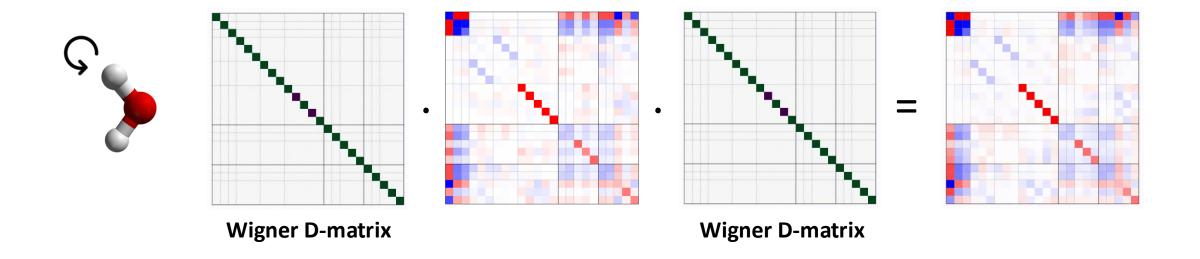


Hamiltonian matrix has high-order equivariant structure

Each block matrix needs a special type of rotation matrix!

Wigner D-matrix

Equivariance of Hamiltonian



$$\mathbf{D}^T H \mathbf{D} = \mathbf{H}_{\text{rot}}$$

Applying a special rotation matrix for rotation of the Hamiltonian matrix (Wigner D-matrix)

Equivariant flow matching for Hamiltonian

Rotated Hamiltonian has the same probability for any Hamiltonian, that is

$$p_t(\mathbf{R} \cdot \mathbf{H}) = p_t(\mathbf{H})$$

Following Song et al, this property can be satisfied by

(1) Rotation invariant prior distribution (t = 0)

$$p_{\mathbf{0}}(\mathbf{R} \cdot \mathbf{H}) = p_{\mathbf{0}}(\mathbf{H})$$

(2) Rotation equivariant vector field

$$v_t(R \cdot H|R\mathcal{M}) = R \cdot v_t(H|\mathcal{M})$$

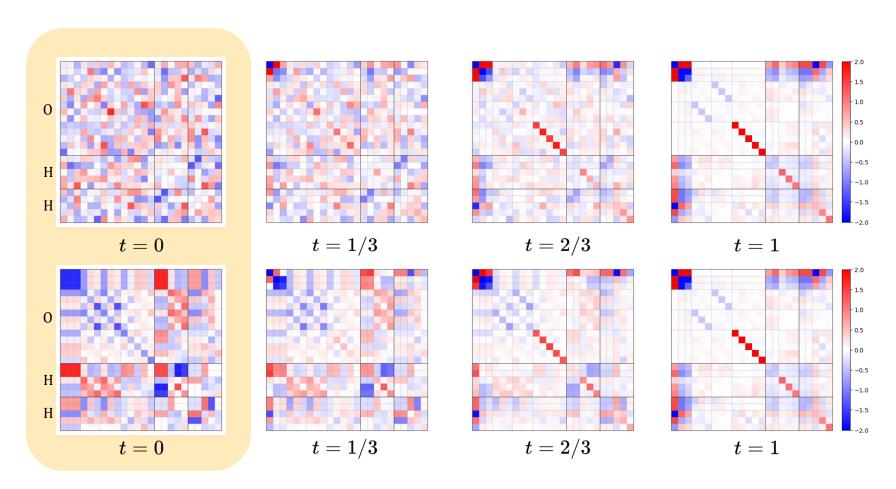
Our method: Invariant prior design

Two types of prior satisfying the invariance:

$$p_0(\mathbf{R} \cdot \mathbf{H} | \mathbf{R} \mathcal{M}) = p_0(\mathbf{H} | \mathcal{M})$$

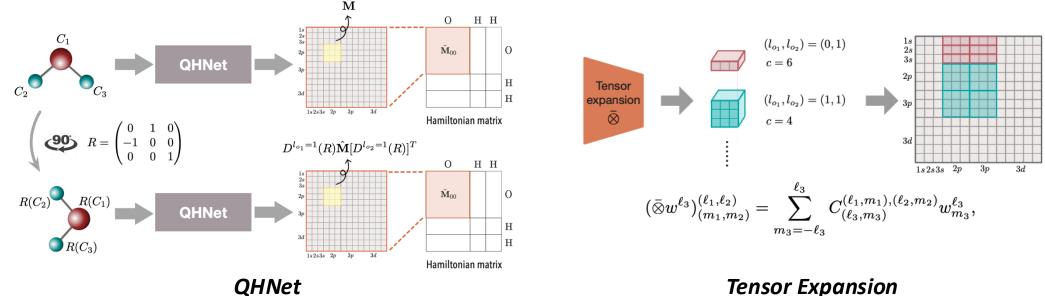
GOEGaussian Orthogonal Ensemble

TETensor Expansion



Equivariant vector field

Using rotation equivariant Hamiltonian prediction architecture (QHNet, Yu et al, 2023)



Modified the architecture to introduce two additional inputs:

- t: **Time conditioning** for flow matching
- \mathbf{H}_t : the **current Hamiltonian** matrix

Our method: Physics-informed finetuning

• Approximated orbital energies $\tilde{\epsilon}$ (from *Li et al*)

$$\tilde{\boldsymbol{\epsilon}}_{\theta} = \mathbf{C}^{\mathsf{T}} \mathbf{H}_{\theta} \mathbf{C}$$

• Ground-truth orbital energies ϵ

$$\epsilon = \mathbf{C}^{\mathsf{T}} \mathbf{H} \mathbf{C}$$

Our finetuning aligns these two values

$$Loss_{\mathrm{FT}} = ||\tilde{\boldsymbol{\epsilon}}_{\theta} - \boldsymbol{\epsilon}||$$

$$Total\ Loss = Loss_{flow} + Loss_{FT}$$

$$HC = SC\epsilon$$

RH-DFT equation

$$\mathbf{C}^{\mathsf{T}}\mathbf{S}\mathbf{C} = \mathbf{I}$$

Identity property

$$\mathbf{C}^{\mathsf{T}}\mathbf{H}\mathbf{C} = \boldsymbol{\epsilon}$$

Orbital energy

Experiment

DFT Approximation – MD17

- Molecular dynamics trajectory for four small molecules
 - Same chemical formula Z with different atomic positions X

 $HC = SC\epsilon$

H: Hamiltonian MAE

 ϵ_{occ} : occupied energy MAE

 \mathcal{S}_c : Similarity score of the coefficients

		Water (3 atoms)		Ethanol (9 atoms)		Malonaldehyde (9 atoms)			Uracil (12 atoms)				
	Model	$H \downarrow \\ [\mu E_h]$	$\epsilon_{ m occ}\downarrow \ [\mu E_h]$	$\mathcal{S}_c \uparrow$ [%]	$\begin{array}{c} H \downarrow \\ [\mu E_h] \end{array}$	$\epsilon_{ m occ}\downarrow \ [\mu E_h]$	$\mathcal{S}_c \uparrow$ [%]	$H\downarrow [\mu E_h]$	$\epsilon_{ m occ}\downarrow \ [\mu E_h]$	$\mathcal{S}_c \uparrow$ [%]	$H \downarrow \\ [\mu E_h]$	$\epsilon_{ m occ}\downarrow \ [\mu E_h]$	$\mathcal{S}_c \uparrow$ [%]
(2019)	SchNOrb	165.4	279.3	100.00	187.4	334.4	100.00	191.1	400.6	99.00	227.8	1760.	90.00
(NIPS'21)	PhiSNet	15.67	85.53	100.00	20.09	102.04	99.81	21.31	100.6	99.89	18.65	143.36	99.86
(ICML'23)	QHNet*	11.70	26.06	100.00	27.99	99.33	99.99	29.60	100.16	99.92	26.80	127.93	99.87
(ICML'25)	SPHNet	23.18	182.29	100.00	21.02	82.30	$1\overline{00.00}$	20.67	95.77	99.99	19.36	<u>118.21</u>	99.99
	Ours	4.93	19.29	100.00	5.33	29.03	100.00	3.80	22.68	99.99	3.68	30.54	99.99

- Our model shows **71% error reduction** on Hamiltonian
- Our model shows lower error on occupied energy $\epsilon_{
 m occ}$ and higher coefficient similarity score \mathcal{S}_c
 - Higher physical fidelity

DFT Approximation – QH9

• The general molecule dataset, which consists of various chemical formulas

H Error

(ICML'23) QHNet (ICLR'25) WANet (ICML'25) SPHNet

		H Error		Enc	ergy relatea er	ror	
Dataset	Model	$H \downarrow [\mu E_h]$	$\epsilon_{\rm occ} \downarrow [\mu E_h]$	$S_c \uparrow [\%]$	$\epsilon_{\text{LUMO}} \downarrow [\mu E_h]$	$\epsilon_{\text{HOMO}} \downarrow [\mu E_h]$	$\epsilon_{\Delta} \downarrow [\mu E_h]$
	QHNet*	77.72	963.45	94.80	18257.34	1546.27	17822.62
	WANet	80.00	833.62	96.86	-	-	-
QH9-stable	SPHNet	45.48	334.28	97.75	-	-	-
(id)	Ours	22.95	119.67	99.51	437.96	179.48	553.87
w/ Finetuning	Ours (WA-FT)	<u>23.85</u>	101.92	99.56	187.48	92.22	206.15
	QHNet*	69.69	884.97	93.01	25848.83	1045.99	25370.10
QH9-stable	SPHNet	43.33	186.40	98.16	-	-	-
(ood)	Ours	20.01	84.54	99.04	321.20	130.74	395.83
	Ours (WA-FT)	20.55	72.64	99.16	171.24	77.96	179.57
	QHNet*	88.36	1170.50	93.65	23269.41	2040.06	22407.96
	WANet	74.74	416.57	99.68	-	-	-
QH9-dynamic	SPHNet	52.18	100.88	99.12	-	-	-
(300k-geo)	Ours	25.94	103.11	99.59	425.18	175.18	547.33
	Ours (WA-FT)	27.12	89.03	99.65	136.63	84.17	154.68
	QHNet*	121.39	5554.36	86.02	53505.09	4352.76	50424.86
QH9-dynamic	SPHNet	108.19	1724.10	91.49	-	-	-
(300k-mol)	Ours	45.91	442.56	98.65	1344.68	479.71	1605.03
	Ours (WA-FT)	<u>46.60</u>	424.75	98.74	912.10	403.51	1047.88

Energy related error

 ϵ_{occ} : occupied energy MAE \mathcal{S}_c : Similarity score of the coefficients

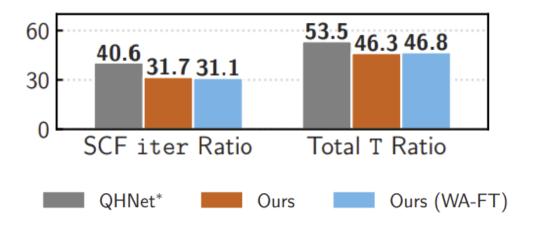
 ϵ_{LUMO} : LUMO energy MAE ϵ_{HOMO} : HOMO energy MAE

 ϵ_Δ : LUMO-HOMO energy diff. MAE

- Our model show a **53% error reduction** on average
- With the **finetuning (WA-FT)**, additional **improvement in Energy** with a trade-off in Hamiltonian error

DFT Acceleration – QH9

Initialization of the SCF process



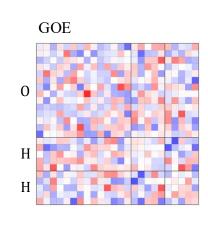
- Reduces the SCF steps calculations by about 69% (= 1-0.31)
- Reduces the **total time** of SCF convergence by **about 54% (= 1-0.46)** (Inference time included)

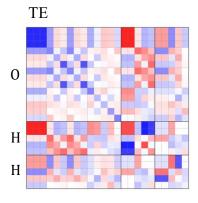
Here, 100% is the conventional initialization (*MinAO*), and a lower value implies more efficiency. We tested on the first 300 samples from each test split

Ablation – Prior distribution

Influence of the prior distribution on QH9

Data	Prior	$H \downarrow [\mu E_h]$	$\epsilon_{ m occ} \downarrow [\mu E_h]$	$\mathcal{S}_c \uparrow [\%]$
id	GOE	25.93	154.65	99.39
	TE	22.95	119.61	99.51
ood	GOE	20.41	87.32	98.95
	TE	20.01	84.54	99.04
geo	GOE	29.39	122.14	99.49
	TE	25.94	103.11	99.59
mol	GOE TE	46.78 45.91	419.68 442.56	98.65 98.65





- **TE** prior consistently yields lower errors than **GOE**
- Highlights importance of designing appropriate priors for Hamiltonian prediction

ML-DFT vs. MLFF (not in paper)

Energy and **Force** evaluation / compared with MLFF

Molecule	Metric (MAE)	Hamiltonian (meV)	(Pred - Targ)				
Maria	metre (mass)	minimum (me v)	Energy (meV)	E. Reduc. (%)	Force (meV/Å)	F. Reduc. (%)	
	DFT-variance	-	0.00008	-	0.0491	-	
	UMA-omol (MLFF)		4326	-	362	-	
Water	Equiformer (MLFF)		-	-		-	
	QHNet (DFT)	0.323	0.048	-	0.803	-	
	QHFlow (DFT)	0.105	0.015	-	0.270	-	
	DFT-variance	-	0.0002	-	0.088	-	
	UMA-omol (MLFF)		8194	-	334	-	
Ethanol	Equiformer (MLFF)		2.2	0.0	2.9	0.0	
	QHNet (DFT)	0.633	0.323	-85.3	2.513	-13.3	
	QHFlow (DFT)	0.152	0.019	-99.1	0.775	-73.3	
	DFT-variance	-	0.0004	-	0.1469	-	
	UMA-omol (MLFF)		13 166	-	487	-	
Malondialdehyde	Equiformer (MLFF)		3.2	0.0	5.4	0.0	
•	QHNet (DFT)	0.653	0.916	-71.4	4.949	-8.4	
	QHFlow (DFT)	0.116	0.035	-98.9	1.187	-78.0	
	DFT-variance	-	0.0004	-	0.2955	-	
	UMA-omol (MLFF)		21 212	-	367	-	
Uracil	Equiformer (MLFF)		4.3	0.0	3.3	0.0	
	QHNet (DFT)	0.546	2.351	-45.3	6.798	106.0	
	QHFlow (DFT)	0.109	0.106	-97.5	1.869	-43.4	

- Vs. Equiformer on MD17
 - -98.5% error reduction on Energy
 - -64.9% error reduction on Forces

ML-DFT vs. MLFF (not in paper)

Energy and **Force** evaluation / compared with MLFF

Molecule	Metric (MAE)	Hamiltonian (meV)	(Pred - Targ)				
Maria	metre (mass)	minimum (me v)	Energy (meV)	E. Reduc. (%)	Force (meV/Å)	F. Reduc. (%)	
	DFT-variance	-	0.00008	-	0.0491	-	
	UMA-omol (MLFF)		4326	-	362	-	
Water	Equiformer (MLFF)		-	-		-	
	QHNet (DFT)	0.323	0.048	-	0.803	-	
	QHFlow (DFT)	0.105	0.015	-	0.270	-	
	DFT-variance	-	0.0002	-	0.088	-	
	UMA-omol (MLFF)		8194	-	334	-	
Ethanol	Equiformer (MLFF)		2.2	0.0	2.9	0.0	
	QHNet (DFT)	0.633	0.323	-85.3	2.513	-13.3	
	QHFlow (DFT)	0.152	0.019	-99.1	0.775	-73.3	
	DFT-variance	-	0.0004	-	0.1469	-	
	UMA-omol (MLFF)		13 166	-	487	-	
Malondialdehyde	Equiformer (MLFF)		3.2	0.0	5.4	0.0	
•	QHNet (DFT)	0.653	0.916	-71.4	4.949	-8.4	
	QHFlow (DFT)	0.116	0.035	-98.9	1.187	-78.0	
	DFT-variance	-	0.0004	-	0.2955	-	
	UMA-omol (MLFF)		21 212	-	367	-	
Uracil	Equiformer (MLFF)		4.3	0.0	3.3	0.0	
	QHNet (DFT)	0.546	2.351	-45.3	6.798	106.0	
	QHFlow (DFT)	0.109	0.106	-97.5	1.869	-43.4	

- Vs. Equiformer on MD17
 - -98.5% error reduction on Energy
 - -64.9% error reduction on Forces

Question & Answer

Thank you!

Open to talk!

Interested in AI for science, computational biology, and material design!

Email: <u>seongsu.kim@kaist.ac.kr</u>

Personal page: https://seongsukim-ml.github.io

LinkedIn: linkedin.com/in/seongsukimml