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Neural Wavefunction

* Neural wavefunction is one of the task of Al for Science
* Wavefunction is the solution of the Schrédinger equation
* Finding the wavefunction of the without the ground truth (unsupervised)

* Achieving the quantum precision chemical property of molecule

Quantum precision: Similar with quantum mechanical method (ex. DFT) - about 1kcal/mol (on energy)
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Motivation

Why should we know wavefunction?

* To calculate the quantum chemical property
* Electrostatics potentials, Electro density, HOMO, LUMO, AEgap and etc.
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Motivation

Why should we know wavefunction?

* To calculate the quantum chemical property
* Electrostatics potentials, Electro density, HOMO, LUMO, AEgap and etc.
Ex. SchNet, EGNN
* Classical GNN approach learned these from the supervised learning

* Cannot make “quantum level accuracy” due to regression error

* Surrogate models are subject to the training domain

* Re-train the model for each chemical property

Molecules (data D)

Supervised learning
I e f@({}) — Property
GNN

Chemical Property (label y)
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Motivation

Neural Wavefunction

* Neural wavefunction tries to model the wavefunction directly
* Not using the supervised learning, but variational Monte Carlo (VMC) framework

* Direct optimize network to model ground truth wavefunction

Molecule Configuration Wavefunction of molecule
_ g
(Pos X, Atomicnum Z) VMC + Gradient descent

No label
(No property given)



2024-12-04

Motivation
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* Wavefunction can be used to measure the chemical property in principle

Functional of wavefunction

F A —  Property

Predefined -
Operator
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Motivation

Wavefunction

* Wavefunction can be used to measure the chemical property in principle

Functional of wavefunction

F Q —  Property

Predefined -
Operator

* Quantum property calculated in this way:
* First, calculate wavefunction from the configuration

* Second, calculate property from functional of wavefunction



Motivation

Wavefunction

* Wavefunction can be used to measure the chemical property in principle

Functional of wavefunction

"

F

Predefined -
Operator

—  Property

* Quantum property calculated in this way:
* First, calculate wavefunction from the configuration

* Second, calculate property from functional of wavefunction

Neural wavefunction deal with this step



Motivation

Wavefunction

* Wavefunction can be used to measure the chemical property in principle

Functional of wavefunction

s

—  Property

F

Predefined -
Operator

* Quantum property calculated in this way:
* First, calculate wavefunction from the configuration

* Second, calculate property from functional of wavefunction

* These methodology is called ab initio (derived by first principle)

* Do not use experimental data or observation, derivate from the principles and laws
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Neural Wavefunction

Wavefunction

* Solving Many-Electron Stationary Schrodinger Equation

H : Hamiltonian (operator)

Hw — E?,b Y : (Electronic) wave function

E' : Energy of the system

* It is one of the eigenvalue and eigenstate problem

* Objective is finding the ground-state eigenstate ’l,bo

Ground-state: State with the smallest eigenvalue



Neural Wavefunction

Wavefunction

2024-12-04

* Solving Many-Electron Stationary Schrodinger Equation

* Glossary

Stationary vs. Non-stationary

N

ol

_/ N
_V&_ _AN

H = E

H : Hamiltonian (operator)

Tp : (Electronic) wave function

E' : Energy of the system
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Wavefunction
* Solving Many-Electron Stationary Schrodinger Equation

H : Hamiltonian (operator)

H'lp — E’Qb Y : (Electronic) wave function

E' : Energy of the system

* Glossary
Stationary vs. Non-stationary Many-electron Single Electron

o o

__ZL_ _ZL Electron
W Iy [
AN AN

N\
Yy I

Most cases Restricted cases
(Manu atoms) (Hydrogen H)
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Wavefunction
* Solving Many-Electron Stationary Schrodinger Equation

H : Hamiltonian (operator)

H'lp — E’Qb Y : (Electronic) wave function

E' : Energy of the system
* Glossary

Stationary vs. Non-stationary

Many-electron

N A
~ | Impos&blg to
Y | solve analytically

Most cases
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Neural Wavefunction

Wavefunction

* Solving Many-Electron Stationary Schrodinger Equation

H : Hamiltonian (operator)

Hw — E?,b Y : (Electronic) wave function

E' : Energy of the system

* To solve this intractable problem, need some approximation



Neural Wavefunction

Wavefunction

* Born-Oppenheimer (BO) approximation
1. Fixing the nuclei position (= nuclei is deterministic and has no kinetic energy)

2. Assuming electronic wave function is independent each other

Ex. ¥(ro,71) = Yo(ro)¥1(r1)

W/O BO With BO

A
Electron I fl I Electron
AL | .‘ﬂ‘.

2024-12-04
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Neural Wavefunction

Wavefunction
* Solving Many-Electron Stationary Schrodinger Equation

H : Hamiltonian (operator)

Hw — E?,b Y : (Electronic) wave function

E' : Energy of the system

* With BO approximation, Hamiltonian is given by
N, N, N, Z Z

-1y 2Ly S

i=1 k=1 3'}216 >i ||'r'z—'r'3|| i=1 m=1 Rm,H n>m HRm RnH

Kinetic energy Elec-Elec pot Elec-Nucl pot Nucl-Nucl pot




Neural Wavefunction

Wavefunction

H

nucleﬂr Hﬂmlltonlan

and Electrons

electron-nuclear

Nonrelativistic Schrédinger eguation
HY({r;}, {Rl }) = EY({r},{R/})
® -+

Function of 3N coordinates of Nucleus

Many-Body |/
coordinate J

system ) — »
Hamlltoman electromc Hamlltonlan
M
> e+, Z”"e DRI L DI
- 2M Vi
az=1 __a= 1b—a+1 a=1 i=1 i=1 j=i+1
Kinetic energy Repulsxonofnucle Attraction Kinetic energy Repulsion of
of nuclei Ty(R) Vyy(R) between of electrons  electrons v, ()
recall nuclei and Te(r).
@ 524 | electrons Vn(R) Ve(r)
Vg = 7 | Ven (r, B) e i
fz* 82 ] T = IRa — ri| gn mrllclei U 0111) electrons




2024-12-04

Neural

Wavefunction

* Solving Many-Electron Stationary Schrodinger Equation

H : Hamiltonian (operator)

Hrl,b — E’Qb Y : (Electronic) wave function

E' : Energy of the system

* With two constraints,

* Fermi-Dirac statistics (Antisymmetric)
Twoatoms: P(71,72) = —(r1,72) , General: (1) = — sign(m)y(m(r))

* Squared integral normalized

/wz(r)dr =1



Neural Wavefunction

Problem objective

* Given Hamiltonian H, finding the lowest energy E, and state 1,
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Neural Wavefunction

Problem objective

* Given Hamiltonian H, finding the lowest energy E, and state 1,

* To solve it, we parametrize the wave function ¥g

* Make the parametrize the wave function to be ground state Y,
Hg ~ Hy

* Then the eigenvalue of the Yy becomes the E|,
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Neural Wavefunction

Problem objective

* Given Hamiltonian H, finding the lowest energy E, and state 1,

* To solve it, we parametrize the wave function ¥g

* Make the parametrize the wave function to be ground state Y,
Hg ~ Hy

* Then the eigenvalue of the Yy becomes the E|,

How can we do it in the unsupervised way?



Neural Wavefunction

Variational Monte Carlo (VMC) s Hvy = Ey

* Ground state energy can be calculated by the inner product over SE:

(%ol H [tp0) (0| Eo o) _ g

(Yo | o) (Yo | o)

* It is the same with below expression:

e H)r
[ (r)2dr




Neural Wavefunction

Variational Monte Carlo (VMC) s Hvy = Ey

* Ground state energy can be calculated by the inner product over SE:

(ol H [tp0) (ol Eo |tho) _ g

(Yo | o) (Yo | o)

» Q: Is it valid for any wave-function (ex. ¥g)?
* A:Actually, it is hard to guarantee since Vg may not be the eigen state of H

H1)g # Enpyg



Neural Wavefunction

Variational Monte Carlo (VMC) s Hvy = Ey

* Assuming trial energy E, is defined by the

J Yo(r)Hpo(r)dr
f¢9 zd’l’

0 —

* This is solved by the variational principle
- States that the trial energy of any trial wavefunction 1)y upper bounds E,

J ¥o(r)Hpp(r)dr
[ 1g(r)2dr

Ey < Ey=



Neural wavefunction

Variational Monte Carlo (VMC()

* Simply calculate the gradient of trial energy Ey is enough to find Ej

* To find Vg E g, define local energy E;,(r) and probability density p(r)

_ Hy(r) o(r) — ()

Br(r) o(r) ~ [¢(r)dr

* Then, we have

By = [ p(r)By(r)dr = By Eu(r)

VoEs = Epw) [(EL(r) — Epm [EL(r)]) Vo log 1he(r)]



Neural wavefunction

Variational Monte Carlo (VMC()

* This is called Monte Carlo
E, — / p(r) By (r)dr = By [Ey(r)]

VoEg = Ep(r) [(EL(’I’) — Ep_(r) [EL(T)])VB log "L’B(T)}

, since the gradient calculation needs to sample over p(r)

* In addition, the true ground energy E, and state Y, is hard to get

* Criterion for good wave function is the lowest energy Eg over baseline

2024-12-04



Neural wavefunction

Variational Monte Carlo (VMC()

* This is called Monte Carlo
E, = / p(r) By (r)dr = By [Ey(r)]

VoEg = Eppy [(EL(r) — Epr)[EL(7)]) Vo log1ps(T))

, since the gradient calculation needs to sample over p(r)
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References

Three types of the Research direction

* Antisymmetric architecture/representation
* Neural Pfaffians: Solving Many Many-Electron Schrodinger Equations ('24 NIPS)
* On Representing Electronic Wave Functions with Sign Equivariant Neural Networks ('24 ICLRw)

e Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions ("21 ICLR)
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References

Three types of the Research direction

* Antisymmetric architecture/representation
* Neural Pfaffians: Solving Many Many-Electron Schrodinger Equations (24 NIPS)
* On Representing Electronic Wave Functions with Sign Equivariant Neural Networks ('24 ICLRw)

* Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions ("21 ICLR)

* Transferrable architecture / parameterization over molecules
e Generalizing Neural Wave Functions (23 ICML)

* Solving the electronic Schrodinger equation for multiple nuclear geometries with weight-sharing deep neural networks
(‘22 Nat. Comp)

* Variational Monte Carlo on a Budget —Fine-tuning pre-trained Neural Wavefunctions ("23NIPS)
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References

Three types of the Research direction

* Antisymmetric architecture/representation

* Transferrable architecture / parameterization over molecules

* Tackling the VMC or sampling process (Optimization?, Training?)
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FermiNet (‘22 PRR)

* One of the baseline from the physics community + (DeepMind)
* Didn't use the GNN

* Using Slater determinant for antisymmetric Ansatz

Pfau, D., Spencer, J.S., Matthews, A. G. D. G, & Foulkes, W. M. C. (2020). Ab initio solution of the many -electron Schrédinger equation with deep neural networks. Physical Review Research, 2(3), 033429.
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Slater determinant

* Antisymmetry is the one of the property of the determinant operation

1
E{% (x1)92 (x2) — Y1 (%2)92 (%x1)}

1 |91 (x1) 2 (x1)

V2 |1 (x2) 2 (x2)

vy ('X.l, Xg) m—

* Swapping, x; and x, implying row change
* Naturally, W is antisymmetric

\I](Xla X2) — _\Ij(x27 xl)

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064



Slater determinant

* Slater determinant based on Hatree-Fock (or mean-field) approximation

* (Hatree Product) a multi-electron wave function as a simple product of one-electron

wave functions (orbitals).

* For each slater determinantis

det[®*] =

(k € K),

Electron position index x;

®1 (Xl)

¢n (Xl)

¢1 (Xn)

qbn (Xn)

2024-12-04

¢i € k
Orbital position index ¢;

* K is the possible subset of the orbitals having n numbers of the electrons

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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Slater determinant

¢1(x1) ... &1(xy)
det[®"] = : :

bu(x1) n fn (%)

* Antisymmetrized ansatz of the wave function is weighted sum of
the possible slater determinant:

Y(X1,...X,) = Z wy, det[®F]

* Limitation: exponential complexity along the system size n

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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FermiNet ('22 PRR)

* Encoding all possible N-e & e-e interactions and make orbital matrix

* Make slater determinant from orbital matrix

N-e info N xM

n—R
r R
rs— R
0 e-e info (N —1)? 1/)
S 00 T =T [ hp ]
Nuclei at R L — T3 [ hs ] FE
e3atry - T .
rHh—n _ i i1 e e
Y(ry,12,73; R) T — 13 _ p =
1w =7 '9"4,-,4
Ty =T [ hy ]
One atom example 3 1

Pfau, D., Spencer, J.S., Matthews, A. G. D. G, & Foulkes, W. M. C. (2020). Ab initio solution of the many -electron Schrédinger equation with deep neural networks. Physical Review Research, 2(3), 033429.
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FermiNet (‘22 PRR)

* Using slater determinant to anti-symmetry

* Define arbitrary orbital that decay to o infinitely far away from any nuclei

. M 1. Nucleus num/idx
k _ h . k k __k — — y
¢Zj T (wzhj + bz) ;ﬂ-zm €Xp ( O;m T‘J RmH) K, k Orbital num/idx
S
me = Sigmoid (me)a Ufjm = Softplus (Sfm) pa . Free parameter
(ZW] Electron idx

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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FermiNet (‘22 PRR)

* Using slater determinant to anti-symmetry

* Define arbitrary orbital that decay to o infinitely far away from any nuclei

. M .m Nucleus num/idx
k . k k __k — = y
Q%' — (wzhj + bz) ;'N@m exp ( Tim |17 RmH) K, L omital um/id
S
me = Sigmoid (pfm), a;"m — Softplus (Sfm) p, Free parameter

l,] Electron idx

* Q) Why not using spherical harmonics ?

* Using spherical harmonics as orbital makes results trivial
ex. Y(PR) = Y(r) =c

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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FermiNet (‘22 PRR)

* Limitation
* Computational demands due to all electron interaction encoding

* Network can be trained and optimized on a single system. (single atom configuration)

Pfau, D., Spencer, J.S., Matthews, A. G. D. G, & Foulkes, W. M. C. (2020). Ab initio solution of the many -electron Schrédinger equation with deep neural networks. Physical Review Research, 2(3), 033429.
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P E S N Et (‘22 I C L R) Geometry: Same chemical form, different position

* To handle the multiple geometry, using Meta learning

* Potential energy surface (PES) is

,-..
p

=
—_

es(se| |®o e 5]
- A - =9
» MetaGNN

‘e & L |

WFModel —» (1)

U, (three-body potential energy) &

U, (two-body potential energy)

v

r (distance between bonded atoms) @ (interbond angle)

PES architecture Example of the PES

* Using slater determinant to anti-symmetry / Using GNN

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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PESNet (‘22 ICLR)

* Using slater determinant to anti-symmetry

* Define arbitrary orbital that decay to o infinitely far away from any nuclei

. M .m Nucleus num/idx
k _ h . k k __k — — y
Q%' — (wzhj + bz) ;'N@m exp ( Tim |17 RmH) K, L omital um/id
S
me = Sigmoid (pfm), a;"m — Softplus (Sfm) pa . Free parameter
(ZW] Electron idx

* If we use GNN, why not use spherical harmonics ?

* Ans) Using spherical harmonics as orbital makes results trivial
ex. Y(PR) = 9(r) =c

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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PESNet (‘22 ICLR)

* Limitation

* Relaxed to the PES, but not transferable to another molecule

Gao, N., & Ginnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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(Globe/Moon)('23 ICML)

* Motivation
* Generalization across different molecules & different geometries

* Idea
* Still using Meta-learning Framework, but try to estimate more parameters

 Define the interactions more rigorously and try to expand functional space
* Ex. Not just considering E-E, but N-E, N-O each other

 Define size-consistency and propose training for size-consistency

* Ex.The energy of the molecular is very differed by the size of

Gao, N., & Gunnemann, S. (2023). Generalizing Neural Wave Functions. 23/CML. https://doi.org/10.48550/arxiv.2302.04168
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NeurPf (24 NIPS)

* More expressive way to build antisymmetric function
* The Pfaffian operator is defined on skew-symmetric 2n X 2n matrix

1 mn
PEHA) = 52 Z sgn (T }Hﬁﬂm—u:r{zﬂ

TESEJ’L i=1

where S,,, is the symmetric group of 2n element

* Example:

0 a b c]

pf —a 0 ¢ =af — be +dc
b —d 0 f
—ec —e —f 0]

Gao, N., & Ginnemann, S. (2024). Neural Pfaffians: Solving Many Many-Electron Schr\"odinger Equations. 24NIPS. https://doi.org/10.48550/arxiv.2405.14762



NeurPf (24 NIPS)

* The Pffafian has two property
Pf(A)? = det(A4)”

and
Pf(BABT) — det(B) Pf(A) B isinvertible
» For permutation equivariant function A(7(r)) = P,A(r)P,
¥(7(r)) = Pf(A(r(r))) = Pf (P-A(r)P;)
— det (P,) PE(A(r))
= sign(7)¥(r)

Gao, N., & Ginnemann, S. (2024). Neural Pfaffians: Solving Many Many-Electron Schr\"odinger Equations. 24NIPS. https://doi.org/10.48550/arxiv.2405.14762



NeurPf (24 NIPS)

* Construct wave function with Pffafian

1 ) )
U ptatfian (T) = BT (Apr) Pf ((I)Pf(r)APfq)Pf(r)T)

* |t covers more functions than Slater wave functions

Ny
U ptaffian (T) = E kYW Ptaffian k@

k=1

Gao, N., & Ginnemann, S. (2024). Neural Pfaffians: Solving Many Many-Electron Schr\"odinger Equations. 24NIPS. https://doi.org/10.48550/arxiv.2405.14762
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A Score-Based Model for Neural Wavefunctions (23’ rejected)

* Motivation:
* Can we just model the Wavefunction and energy by the score function?
_ Hy(r)
p(r)
* Try to model the score of the gradient’

8(1‘) = V. log ’l,b(’l‘)

* Then local energy become

Er(r) = —%(tl‘(VTS("‘) +s(r)|I*) + V(r)

25 (r) = 2 3 (VP logd(r) + (Vilog(r))?) + V()

Zhang, X., Xu, S., & Ji, S. (2023). A Score-Based Model for Learning Neural Wavefunctions. arXiv. https://doi.org/10.48550/arxiv.2305.16540


https://openreview.net/forum?id=rMQ1Wme3S0c
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A Score-Based Model for Neural Wavefunctions (23’ rejected)

* Try to model the score of the gradient’
s(r) = Vi logy(r)

* Model the |y ()| distribution through Langevin dynamics
rir1 = T + Voe + as(ry)

* Limitation
* Score is computed from the FermiNet..

* One of the rejected reasonis it looks like surrogate model of the FermiNet

* Hard to apply operator to wavefunction, i.e., d¥/dx

Zhang, X., Xu, S., & Ji, S. (2023). A Score-Based Model for Learning Neural Wavefunctions. arXiv. https://doi.org/10.48550/arxiv.2305.16540


https://openreview.net/forum?id=rMQ1Wme3S0c

Thank you



Diffusion Monte Carlo Method

* Conceptually difficult to me and I still try to understanding...
* For any trial wave function W and exact wave function ¥,

U(r,t) = —e HEDg(p)

* When time t go to infinity, this function proportional to ¥,

lim T (r, ) = —e~Eo-Etg () / o (r) T (r)dr

t—00

lim ¥(r,t) x ¥y(r)

t—00

https://en.wikipedia.org/wiki/Diffusion_Monte_Carlo

2024-12-04



Diffusion Monte Carlo Method

* Conceptually difficult to me and I still try to understanding...
* For any trial wave function W and exact wave function ¥,

U(r,t) = —e HEDg(p)

* When time t go to infinity, this function proportional to ¥,

lim T (r, ) = —e~Eo-Etg () / o (r) T (r)dr

t—00

lim ¥(r,t) x ¥y(r)

t—00


https://en.wikipedia.org/wiki/Diffusion_Monte_Carlo
https://arxiv.org/pdf/1508.02989
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Diffusion Monte Carlo Method

* We know infinite time evolved wavefunction is

tlirglo U(r,t) o< ¥y(r)

* However, we only know the time derivative from Schrodinger eq.

N
B oY(r,T) _ [Z —%ng(’r, )| + (V(r) — E7)p(r, 1)

orT —

* We can define the diffusion equation from above relation...
* Itis so-called “diffusion” Monte Carlo Method

 Skipped the Monte Carlo part
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Appendix 1

" AX (0 e - o2
VoL(8) — Vo (f d‘Yﬁ¢(||§)EL(XJ) ([ dXy (X)”iig)i)) Vol|¢|| . A-B

Objective: minimize the energy expectation value of the wave-function Ansatz:

For convenience, omit # subscript, e.g, 1. Continuing, we have

_ JAX (Vo (X)) EL(X) | [ dX¢*(X)(VeEL(X))

L(6) = (WlH[p)  [dXy (X)HP(X) . Tk Tl
(¢|) JdX (X)) (X) [ AXPP(X)Vylog?(2)EL(X) | [dX¢*(X)(VeEL(X))
l#1? I
= Ey[ErVplogy?] + E,[VeEL).
Let's define local energy E'p, such that FrlEL s v BV
. and
Hy(X)
BL(X) = S50 X 0B Tl
11> Il
"dX V02 (X)
Then, we can rewrite above equation = L) J ||1;||2
o) = L(8)- J dX"‘.il-’?Um}IV"'ilUg "‘F'-’E(X}
' . I.' * /) 'L‘: < . . I P
£6) = JdX9 (XJU(X}( 00 ) B de ( (X)) (X) )EL(XJ — L(6)E,|V log ¥
[ dXv* (X)w(X) J dX4H(X)y(X)
or, using the notation of the electron density p( X ) = LT‘E%—), However, E,[VoEr] = 0:
OEL = d% _ 9HY *": HY -8y

£(6) = [ dXp(X)EL(X) = By [EL(X)
since H is symmetric

(HOwp, ) — (00, HY)

— =0
1112

Ep0:EL] =
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Appendix 2

B EQUIVARIANT NEURAL NETWORKS AS WAVE FUNCTIONS

Here, we want to briefly discuss why equivariant neural networks as proposed by Thomas et al.
(2018) or Batzner et al. (2021) are no alternative to our equivariant coordinate system. The issue is
the same as for regular GNNSs (Klicpera et al., 2019), namely that such networks can only represent
spherically symmetric functions for atomic systems which, as discussed in Section 3.3, is insufficient
for wave functions. While this is obvious for regular GNNs, as they operate only on inter-particle
distances rather than vectors, equivariant neural networks take advantage of higher SO(3) representa-
tions. However, if one would construct the orbitals ¢(7°) = [¢1(7), ..., ¢n (7 )] by concatenating
E equivariant SO(3) representations ¢(7) = [¢,(7),...,¢p(7)] with Zf:l dim(¢.(7;)) =
N, any resulting real-valued wave function ¢»(7) = det ¢(7) would be spherically symmetric,
ie., (T R) = (7),VR € SO(3).

The proof is as follows: If one rotates the electrons T e RV*3 by any rotation matrix R € SO(3),

the orhital matrix changes as where D* € RV*¥ is a block-diagonal matrix and D is the Wigner-D matrix induced by rotation

qﬁ;(?’ R) = qf;(?) DR, R corresponding to the e-th SO(3) representation. Since Wigner-D matrices are unitary and we
R . R R restrict our wave function to real-valued
D" = diag(D7",...,Dy)

V(T R) = det (7 R)
= det(¢(7) D)
= det ¢(7) det D*
E
= det ¢(7) [ [ det DF ()
= det ¢(7) -
= (7).



Relation with REINFORCE

* VMC

Eg = Epr) [EL(r)] pr) = J *(r)dr

VoEg = Epi) (EL(r) — Epey [Er(r)]) Ve logp(r)

* Policy Gradient

J(0) = Ery(als) (s, a)]
VoJ(0) = Eryals)|7(5,a)Velog me(als))

VoJ(0) = Erya)s) [((s,a) — b(s)) Vg logmg(als)]




Relation with EBM

« VMC S2(r)
Eg = Epr) [EL(T), ) = J *(r)dr

Volg = ip(r)[(EL(r) — ap(r) Er(r)])Velogp(r)]

p(r) = ZREID) 70— [yyar, r0guir) = - 227

VoEg = Epya) [(fo(2) — Ep,a) [fo(2)]) Vo logpe(z)).
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