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Neural Wavefunction
• Neural wavefunction is one of the task of AI for Science

• Wavefunction is the solution of the Schrödinger equation

• Finding the wavefunction of the without the ground truth (unsupervised)

• Achieving the quantum precision chemical property of molecule

2024-12-04Introduction

Quantum precision: Similar with quantum mechanical method (ex. DFT) - about 1𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 (on energy)



Why should we know wavefunction?
2024-12-04Motivation

• To calculate the quantum chemical property

• Electrostatics potentials, Electro density, HOMO, LUMO, ΔEgap and etc.  

• Classical GNN method learned these from the supervised learning

• Cannot make “quantum level accuracy” due to regression error

• Surrogate models are subject to the training domain

• Re-train the model for each chemical property

Supervised learning
Molecules (data 𝐷)

Chemical Property (label 𝑦)

Property

Ex. SchNet, EGNN
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Neural Wavefunction
2024-12-04Motivation

• Neural wavefunction tries to model the wavefunction directly

• Not using the supervised learning, but variational Monte Carlo (VMC) framework

• Direct optimize network to model ground truth wavefunction

VMC + Gradient descent

Molecule Configuration
(Pos X , Atomic num Z )

Wavefunction of molecule

No label
(No property given)



Wavefunction
2024-12-04Motivation

• Wavefunction can be used to measure the chemical property in principle

• Quantum property calculated in this way:

• First, calculate wavefunction from the configuration

• Second, calculate property from functional of wavefunction

• These methodology is called ab initio

• Do not use experimental data or observation, derivate from the principles and laws

Functional of wavefunction

Property
Predefined
Operator
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Wavefunction
2024-12-04Motivation

• Wavefunction can be used to measure the chemical property in principle

• Quantum property calculated in this way:

• First, calculate wavefunction from the configuration

• Second, calculate property from functional of wavefunction

• These methodology is called ab initio (derived by first principle)

• Do not use experimental data or observation, derivate from the principles and laws

Functional of wavefunction

Property
Predefined
Operator



Wavefunction
2024-12-04Neural Wavefunction

• Solving Many-Electron Stationary Schrödinger Equation

• It is one of the eigenvalue and eigenstate problem

• Objective is finding the ground-state eigenstate 

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system

Ground-state: State with the smallest eigenvalue



Wavefunction
2024-12-04Neural Wavefunction

• Solving Many-Electron Stationary Schrödinger Equation

• Glossary

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system

Stationary vs. Non-stationary
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• Solving Many-Electron Stationary Schrödinger Equation

• Glossary

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system

Stationary vs. Non-stationary Many-electron Single Electron

Most cases
(Manu atoms)

Restricted cases
(Hydrogen H)



Wavefunction
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• Solving Many-Electron Stationary Schrödinger Equation

• Glossary

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system

Stationary vs. Non-stationary Many-electron

Most cases

Impossible to
solve analytically



Wavefunction
2024-12-04Neural Wavefunction

• Solving Many-Electron Stationary Schrödinger Equation

• To solve this intractable problem, need some approximation

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system



Wavefunction
2024-12-04Neural Wavefunction

• Born-Oppenheimer (BO) approximation

1. Fixing the nuclei position (= nuclei is deterministic and has no kinetic energy)

2. Assuming electronic wave function is independent each other

W/O BO

Ex.

With BO



Wavefunction
2024-12-04Neural Wavefunction

• Solving Many-Electron Stationary Schrödinger Equation

• With BO approximation, Hamiltonian is given by

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system

Kinetic energy Elec-Elec pot Elec-Nucl pot Nucl-Nucl pot



Wavefunction
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Wavefunction
2024-12-04Neural

• Solving Many-Electron Stationary Schrödinger Equation

• With two constraints,

• Fermi-Dirac statistics (Antisymmetric)

• Squared integral normalized

: Hamiltonian (operator)

: (Electronic) wave function

: Energy of the system

Two atoms: , General:



Problem objective
• Given Hamiltonian 𝐻 , finding the lowest energy 𝐸0 and state 𝜓0

• To solve it, we parametrize the wave function        

• Make the parametrize the wave function to be ground state 𝜓0

• Then the eigenvalue of the 𝜓𝜃  becomes the 𝐸0

2024-12-04Neural Wavefunction

How can we do it in the unsupervised way?
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Variational Monte Carlo (VMC)
• Ground state energy can be calculated by the inner product over SE: 

• It is the same with below expression:

2024-12-04Neural Wavefunction

SE:



Variational Monte Carlo (VMC)
• Ground state energy can be calculated by the inner product over SE: 

• Q: Is it valid for any wave-function (ex.         )?

• A: Actually, it is hard to guarantee since          may not be the eigen state of

2024-12-04Neural Wavefunction

SE:



Variational Monte Carlo (VMC)
• Assuming trial energy       is defined by the

• This is solved by the variational principle

• States that the trial energy of any trial wavefunction         upper bounds 𝐸0

2024-12-04Neural Wavefunction

SE:



Variational Monte Carlo (VMC)
• Simply calculate the gradient of trial energy         is enough  to find 𝐸0

• To find ∇𝜃𝐸 𝜃, define local energy                 and probability density 

• Then, we have

2024-12-04Neural wavefunction



Variational Monte Carlo (VMC)
• This is called Monte Carlo

, since the gradient calculation needs to sample over 

• In addition, the true ground energy 𝐸0 and state 𝜓0 is hard to get

• Criterion for good wave function is the lowest energy Eθ over baseline

2024-12-04Neural wavefunction
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Three types of the Research direction
• Antisymmetric architecture/representation

• Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations (’24 NIPS)

• On Representing Electronic Wave Functions with Sign Equivariant Neural Networks (’24  ICLRw)

• Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions (’21  ICLR)

• Transferrable architecture / parameterization over molecules
• Generalizing Neural Wave Functions (’23 ICML)

• Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks 
(’22 Nat. Comp)

• Variational Monte Carlo on a Budget –Fine-tuning pre-trained Neural Wavefunctions (’23NIPS)

• Tackling the VMC or sampling process (Optimization?, Training?)
• Sampling-free Inference for Ab-Initio Potential Energy Surface Networks (’22 ICLR)

• Simulations of state-of-the-art fermionic neural network wave functions with diffusion Monte Carlo (’21 Arxived)

• A Score-Based Model for Learning Neural Wavefunctions (‘23 rejected)

2024-12-04References
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FermiNet (’22 PRR)
• One of the baseline from the physics community + (DeepMind)

• Didn’t use the GNN

• Using Slater determinant for antisymmetric Ansatz

2024-12-04

Pfau, D., Spencer, J. S., Matthews, A. G. D. G., & Foulkes, W. M. C. (2020). Ab initio solution of the many -electron Schrödinger equation with deep neural networks. Physical Review Research, 2(3), 033429.

Ansatz: guess or assumption of a mathematical expression or function of physical model



Slater determinant
• Antisymmetry is the one of the property of the determinant operation

• Swapping, 𝑥1 and 𝑥2 implying row change 

• Naturally, Ψ is antisymmetric

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064



Slater determinant
• Slater determinant based on Hatree-Fock (or mean-field) approximation 

• (Hatree Product) a multi-electron wave function as a simple product of one-electron 
wave functions (orbitals).

• For each slater determinant is

• 𝐾 is the possible subset of the orbitals having 𝑛 numbers of the electrons

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064

Orbital: single paricle (or electron) wave function

Ex.Ψ x1, x2 = 𝜒1 𝑥1 𝜒2 𝑥2

Electron position index 𝑥𝑖

Orbital position index 𝜙𝑖

(𝑘 ∈ 𝐾),



Slater determinant

• Antisymmetrized ansatz of the wave function is weighted sum of
the possible slater determinant:

• Limitation: exponential complexity along the system size 𝑛

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064



FermiNet (’22 PRR)
• Encoding all possible N-e & e-e interactions and make orbital matrix

• Make slater determinant from orbital matrix

2024-12-04

Pfau, D., Spencer, J. S., Matthews, A. G. D. G., & Foulkes, W. M. C. (2020). Ab initio solution of the many -electron Schrödinger equation with deep neural networks. Physical Review Research, 2(3), 033429.
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(Sole nuclei 𝑀 = 1)
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FermiNet (’22 PRR)
• Using slater determinant to anti-symmetry

• Define arbitrary orbital that decay to 0 infinitely far away from any nuclei

• Q) Why not using spherical harmonics ?

• Using spherical harmonics as orbital makes results trivial

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064

Nucleus num/idx

Orbital num/idx

Free parameter

Electron idx

Ex.
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FermiNet (’22 PRR)
• Limitation

• Computational demands due to all electron interaction encoding

• Network can be trained and optimized on a single system. (single atom configuration)

2024-12-04

Pfau, D., Spencer, J. S., Matthews, A. G. D. G., & Foulkes, W. M. C. (2020). Ab initio solution of the many -electron Schrödinger equation with deep neural networks. Physical Review Research, 2(3), 033429.



PESNet (‘22 ICLR)
• To handle the multiple geometry, using Meta learning

• Potential energy surface (PES) is 

• Using slater determinant to anti-symmetry / Using GNN

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064

Geometry: Same chemical form, different position

PES architecture Example of the PES



PESNet (‘22 ICLR)
• Using slater determinant to anti-symmetry

• Define arbitrary orbital that decay to 0 infinitely far away from any nuclei

• If we use GNN, why not use spherical harmonics ?

• Ans) Using spherical harmonics as orbital makes results trivial

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064
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Ex.



PESNet (‘22 ICLR)
• Limitation

• Relaxed to the PES, but not transferable to another molecule

2024-12-04

Gao, N., & Günnemann, S. (2021). Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions. 2022 ICLR. https://doi.org/10.48550/arxiv.2110.05064



(Globe/Moon)(’23 ICML)
• Motivation

• Generalization across different molecules & different geometries

• Idea
• Still using Meta-learning Framework, but try to estimate more parameters

• Define the interactions more rigorously and try to expand functional space

• Ex. Not just considering E-E, but N-E, N-O each other

• Define size-consistency and propose training for size-consistency

• Ex. The energy of the molecular is very differed by the size of

2024-12-04

Gao, N., & Günnemann, S. (2023). Generalizing Neural Wave Functions. 23ICML. https://doi.org/10.48550/arxiv.2302.04168



NeurPf (’24 NIPS)
• More expressive way to build antisymmetric function

• The Pfaffian operator is defined on skew-symmetric 2𝑛 × 2𝑛 matrix

where 𝑆2𝑛 is the symmetric group of 2𝑛 element

• Example:

2024-12-04

Gao, N., & Günnemann, S. (2024). Neural Pfaffians: Solving Many Many-Electron Schr\"odinger Equations. 24NIPS. https://doi.org/10.48550/arxiv.2405.14762



NeurPf (’24 NIPS)
• The Pffafian has two property

and

• For permutation equivariant function 

2024-12-04

Gao, N., & Günnemann, S. (2024). Neural Pfaffians: Solving Many Many-Electron Schr\"odinger Equations. 24NIPS. https://doi.org/10.48550/arxiv.2405.14762

𝐵 is invertible



NeurPf (’24 NIPS)
• Construct wave function with Pffafian

• It covers more functions than Slater wave functions

2024-12-04

Gao, N., & Günnemann, S. (2024). Neural Pfaffians: Solving Many Many-Electron Schr\"odinger Equations. 24NIPS. https://doi.org/10.48550/arxiv.2405.14762



A Score-Based Model for Neural Wavefunctions  (23’ rejected)

• Motivation:

• Can we just model the Wavefunction and energy by the score function?

• Try to model the score of the gradient’

• Then local energy become

2024-12-04

https://openreview.net/forum?id=rMQ1Wme3S0c 
Zhang, X., Xu, S., & Ji, S. (2023). A Score-Based Model for Learning Neural Wavefunctions. arXiv. https://doi.org/10.48550/arxiv.2305.16540

https://openreview.net/forum?id=rMQ1Wme3S0c


A Score-Based Model for Neural Wavefunctions  (23’ rejected)

• Try to model the score of the gradient’

• Model the |𝜓 𝒓 |2 distribution through Langevin dynamics

• Limitation

• Score is computed from the FermiNet..

• One of the rejected reason is it looks like surrogate model of the FermiNet

• Hard to apply operator to wavefunction, i.e., dΨ/dx

2024-12-04

https://openreview.net/forum?id=rMQ1Wme3S0c 
Zhang, X., Xu, S., & Ji, S. (2023). A Score-Based Model for Learning Neural Wavefunctions. arXiv. https://doi.org/10.48550/arxiv.2305.16540

https://openreview.net/forum?id=rMQ1Wme3S0c


Thank you

2024-12-04



Diffusion Monte Carlo Method
• Conceptually difficult to me and I still try to understanding…

• For any trial wave function Ψ and exact wave function Ψ0

• When time t go to infinity, this function proportional to Ψ0

2024-12-04

https://en.wikipedia.org/wiki/Diffusion_Monte_Carlo



Diffusion Monte Carlo Method
• Conceptually difficult to me and I still try to understanding…

• For any trial wave function Ψ and exact wave function Ψ0

• When time t go to infinity, this function proportional to Ψ0

2024-12-04

https://en.wikipedia.org/wiki/Diffusion_Monte_Carlo
https://arxiv.org/pdf/1508.02989 

https://en.wikipedia.org/wiki/Diffusion_Monte_Carlo
https://arxiv.org/pdf/1508.02989


Diffusion Monte Carlo Method
• We know infinite time evolved wavefunction is

• However, we only know the time derivative from Schrödinger eq.

• We can define the diffusion equation from above relation…

• It is so-called “diffusion” Monte Carlo Method

• Skipped the Monte Carlo part

2024-12-04
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Appendix 2
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Relation with REINFORCE
• VMC

• Policy Gradient

2024-12-04



Relation with EBM
• VMC

• EBM

2024-12-04
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